Alternatives to IBM MQ logo

Alternatives to IBM MQ

RabbitMQ, Kafka, ActiveMQ, MQTT, and Azure Service Bus are the most popular alternatives and competitors to IBM MQ.
112
186
+ 1
11

What is IBM MQ and what are its top alternatives?

It is a messaging middleware that simplifies and accelerates the integration of diverse applications and business data across multiple platforms. It offers proven, enterprise-grade messaging capabilities that skillfully and safely move information.
IBM MQ is a tool in the Message Queue category of a tech stack.

Top Alternatives to IBM MQ

  • RabbitMQ
    RabbitMQ

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...

  • Kafka
    Kafka

    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...

  • ActiveMQ
    ActiveMQ

    Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License. ...

  • MQTT
    MQTT

    It was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections with remote locations where a small code footprint is required and/or network bandwidth is at a premium. ...

  • Azure Service Bus
    Azure Service Bus

    It is a cloud messaging system for connecting apps and devices across public and private clouds. You can depend on it when you need highly-reliable cloud messaging service between applications and services, even when one or more is offline. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

IBM MQ alternatives & related posts

RabbitMQ logo

RabbitMQ

20.9K
18.4K
527
Open source multiprotocol messaging broker
20.9K
18.4K
+ 1
527
PROS OF RABBITMQ
  • 234
    It's fast and it works with good metrics/monitoring
  • 79
    Ease of configuration
  • 59
    I like the admin interface
  • 50
    Easy to set-up and start with
  • 21
    Durable
  • 18
    Intuitive work through python
  • 18
    Standard protocols
  • 10
    Written primarily in Erlang
  • 8
    Simply superb
  • 6
    Completeness of messaging patterns
  • 3
    Scales to 1 million messages per second
  • 3
    Reliable
  • 2
    Distributed
  • 2
    Supports MQTT
  • 2
    Better than most traditional queue based message broker
  • 2
    Supports AMQP
  • 1
    Clusterable
  • 1
    Clear documentation with different scripting language
  • 1
    Great ui
  • 1
    Inubit Integration
  • 1
    Better routing system
  • 1
    High performance
  • 1
    Runs on Open Telecom Platform
  • 1
    Delayed messages
  • 1
    Reliability
  • 1
    Open-source
CONS OF RABBITMQ
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow

related RabbitMQ posts

James Cunningham
Operations Engineer at Sentry · | 18 upvotes · 1.7M views
Shared insights
on
CeleryCeleryRabbitMQRabbitMQ
at

As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

#MessageQueue

See more

Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.

See more
Kafka logo

Kafka

23.1K
21.7K
607
Distributed, fault tolerant, high throughput pub-sub messaging system
23.1K
21.7K
+ 1
607
PROS OF KAFKA
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
  • 38
    Publish-Subscribe
  • 19
    Simple-to-use
  • 18
    Open source
  • 12
    Written in Scala and java. Runs on JVM
  • 9
    Message broker + Streaming system
  • 4
    KSQL
  • 4
    Avro schema integration
  • 4
    Robust
  • 3
    Suport Multiple clients
  • 2
    Extremely good parallelism constructs
  • 2
    Partioned, replayable log
  • 1
    Simple publisher / multi-subscriber model
  • 1
    Fun
  • 1
    Flexible
CONS OF KAFKA
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging

related Kafka posts

Nick Rockwell
SVP, Engineering at Fastly · | 46 upvotes · 3.3M views

When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

See more
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 2.9M views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
ActiveMQ logo

ActiveMQ

607
1.3K
77
A message broker written in Java together with a full JMS client
607
1.3K
+ 1
77
PROS OF ACTIVEMQ
  • 18
    Easy to use
  • 14
    Open source
  • 13
    Efficient
  • 10
    JMS compliant
  • 6
    High Availability
  • 5
    Scalable
  • 3
    Distributed Network of brokers
  • 3
    Persistence
  • 3
    Support XA (distributed transactions)
  • 1
    Docker delievery
  • 1
    Highly configurable
  • 0
    RabbitMQ
CONS OF ACTIVEMQ
  • 1
    ONLY Vertically Scalable
  • 1
    Support
  • 1
    Low resilience to exceptions and interruptions
  • 1
    Difficult to scale

related ActiveMQ posts

I want to choose Message Queue with the following features - Highly Available, Distributed, Scalable, Monitoring. I have RabbitMQ, ActiveMQ, Kafka and Apache RocketMQ in mind. But I am confused which one to choose.

See more
Naushad Warsi
software developer at klingelnberg · | 1 upvote · 778.6K views
Shared insights
on
ActiveMQActiveMQRabbitMQRabbitMQ

I use ActiveMQ because RabbitMQ have stopped giving the support for AMQP 1.0 or above version and the earlier version of AMQP doesn't give the functionality to support OAuth.

If OAuth is not required and we can go with AMQP 0.9 then i still recommend rabbitMq.

See more
MQTT logo

MQTT

592
570
7
A machine-to-machine Internet of Things connectivity protocol
592
570
+ 1
7
PROS OF MQTT
  • 3
    Varying levels of Quality of Service to fit a range of
  • 2
    Lightweight with a relatively small data footprint
  • 2
    Very easy to configure and use with open source tools
CONS OF MQTT
  • 1
    Easy to configure in an unsecure manner

related MQTT posts

Kindly suggest the best tool for generating 10Mn+ concurrent user load. The tool must support MQTT traffic, REST API, support to interfaces such as Kafka, websockets, persistence HTTP connection, auth type support to assess the support /coverage.

The tool can be integrated into CI pipelines like Azure Pipelines, GitHub, and Jenkins.

See more
Reza Saadat
IoT Solutions Architect at GreenEdge · | 5 upvotes · 86.1K views
Shared insights
on
MQTTMQTTNATSNATS

I want to use NATS for my IoT Platform and replace it instead of the MQTT broker. is there any preferred added value to do that?

See more
Azure Service Bus logo

Azure Service Bus

269
527
7
Reliable cloud messaging as a service (MaaS)
269
527
+ 1
7
PROS OF AZURE SERVICE BUS
  • 4
    Easy Integration with .Net
  • 2
    Cloud Native
  • 1
    Use while high messaging need
CONS OF AZURE SERVICE BUS
  • 1
    Limited features in Basic tier
  • 1
    Skills can only be used in Azure - vendor lock-in
  • 1
    Lacking in JMS support
  • 1
    Observability of messages in the queue is lacking

related Azure Service Bus posts

Shared insights
on
Azure Service BusAzure Service BusIBM MQIBM MQ

Want to get the differences in features and enhancement, pros and cons, and also how to Migrate from IBM MQ to Azure Service Bus.

See more
JavaScript logo

JavaScript

350.1K
266.6K
8.1K
Lightweight, interpreted, object-oriented language with first-class functions
350.1K
266.6K
+ 1
8.1K
PROS OF JAVASCRIPT
  • 1.7K
    Can be used on frontend/backend
  • 1.5K
    It's everywhere
  • 1.2K
    Lots of great frameworks
  • 896
    Fast
  • 745
    Light weight
  • 425
    Flexible
  • 392
    You can't get a device today that doesn't run js
  • 286
    Non-blocking i/o
  • 236
    Ubiquitousness
  • 191
    Expressive
  • 55
    Extended functionality to web pages
  • 49
    Relatively easy language
  • 46
    Executed on the client side
  • 30
    Relatively fast to the end user
  • 25
    Pure Javascript
  • 21
    Functional programming
  • 15
    Async
  • 13
    Full-stack
  • 12
    Setup is easy
  • 12
    Its everywhere
  • 11
    JavaScript is the New PHP
  • 11
    Because I love functions
  • 10
    Like it or not, JS is part of the web standard
  • 9
    Can be used in backend, frontend and DB
  • 9
    Expansive community
  • 9
    Future Language of The Web
  • 9
    Easy
  • 8
    No need to use PHP
  • 8
    For the good parts
  • 8
    Can be used both as frontend and backend as well
  • 8
    Everyone use it
  • 8
    Most Popular Language in the World
  • 8
    Easy to hire developers
  • 7
    Love-hate relationship
  • 7
    Powerful
  • 7
    Photoshop has 3 JS runtimes built in
  • 7
    Evolution of C
  • 7
    Popularized Class-Less Architecture & Lambdas
  • 7
    Agile, packages simple to use
  • 7
    Supports lambdas and closures
  • 6
    1.6K Can be used on frontend/backend
  • 6
    It's fun
  • 6
    Hard not to use
  • 6
    Nice
  • 6
    Client side JS uses the visitors CPU to save Server Res
  • 6
    Versitile
  • 6
    It let's me use Babel & Typescript
  • 6
    Easy to make something
  • 6
    Its fun and fast
  • 6
    Can be used on frontend/backend/Mobile/create PRO Ui
  • 5
    Function expressions are useful for callbacks
  • 5
    What to add
  • 5
    Client processing
  • 5
    Everywhere
  • 5
    Scope manipulation
  • 5
    Stockholm Syndrome
  • 5
    Promise relationship
  • 5
    Clojurescript
  • 4
    Because it is so simple and lightweight
  • 4
    Only Programming language on browser
  • 1
    Hard to learn
  • 1
    Test
  • 1
    Test2
  • 1
    Easy to understand
  • 1
    Not the best
  • 1
    Easy to learn
  • 1
    Subskill #4
  • 0
    Hard 彤
CONS OF JAVASCRIPT
  • 22
    A constant moving target, too much churn
  • 20
    Horribly inconsistent
  • 15
    Javascript is the New PHP
  • 9
    No ability to monitor memory utilitization
  • 8
    Shows Zero output in case of ANY error
  • 7
    Thinks strange results are better than errors
  • 6
    Can be ugly
  • 3
    No GitHub
  • 2
    Slow

related JavaScript posts

Zach Holman

Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 9.6M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Git logo

Git

289K
173.8K
6.6K
Fast, scalable, distributed revision control system
289K
173.8K
+ 1
6.6K
PROS OF GIT
  • 1.4K
    Distributed version control system
  • 1.1K
    Efficient branching and merging
  • 959
    Fast
  • 845
    Open source
  • 726
    Better than svn
  • 368
    Great command-line application
  • 306
    Simple
  • 291
    Free
  • 232
    Easy to use
  • 222
    Does not require server
  • 27
    Distributed
  • 22
    Small & Fast
  • 18
    Feature based workflow
  • 15
    Staging Area
  • 13
    Most wide-spread VSC
  • 11
    Role-based codelines
  • 11
    Disposable Experimentation
  • 7
    Frictionless Context Switching
  • 6
    Data Assurance
  • 5
    Efficient
  • 4
    Just awesome
  • 3
    Github integration
  • 3
    Easy branching and merging
  • 2
    Compatible
  • 2
    Flexible
  • 2
    Possible to lose history and commits
  • 1
    Rebase supported natively; reflog; access to plumbing
  • 1
    Light
  • 1
    Team Integration
  • 1
    Fast, scalable, distributed revision control system
  • 1
    Easy
  • 1
    Flexible, easy, Safe, and fast
  • 1
    CLI is great, but the GUI tools are awesome
  • 1
    It's what you do
  • 0
    Phinx
CONS OF GIT
  • 16
    Hard to learn
  • 11
    Inconsistent command line interface
  • 9
    Easy to lose uncommitted work
  • 7
    Worst documentation ever possibly made
  • 5
    Awful merge handling
  • 3
    Unexistent preventive security flows
  • 3
    Rebase hell
  • 2
    When --force is disabled, cannot rebase
  • 2
    Ironically even die-hard supporters screw up badly
  • 1
    Doesn't scale for big data

related Git posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
GitHub logo

GitHub

278.9K
243.2K
10.3K
Powerful collaboration, review, and code management for open source and private development projects
278.9K
243.2K
+ 1
10.3K
PROS OF GITHUB
  • 1.8K
    Open source friendly
  • 1.5K
    Easy source control
  • 1.3K
    Nice UI
  • 1.1K
    Great for team collaboration
  • 867
    Easy setup
  • 504
    Issue tracker
  • 486
    Great community
  • 482
    Remote team collaboration
  • 451
    Great way to share
  • 442
    Pull request and features planning
  • 147
    Just works
  • 132
    Integrated in many tools
  • 121
    Free Public Repos
  • 116
    Github Gists
  • 112
    Github pages
  • 83
    Easy to find repos
  • 62
    Open source
  • 60
    It's free
  • 60
    Easy to find projects
  • 56
    Network effect
  • 49
    Extensive API
  • 43
    Organizations
  • 42
    Branching
  • 34
    Developer Profiles
  • 32
    Git Powered Wikis
  • 30
    Great for collaboration
  • 24
    It's fun
  • 23
    Clean interface and good integrations
  • 22
    Community SDK involvement
  • 20
    Learn from others source code
  • 16
    Because: Git
  • 14
    It integrates directly with Azure
  • 10
    Newsfeed
  • 10
    Standard in Open Source collab
  • 8
    Fast
  • 8
    It integrates directly with Hipchat
  • 8
    Beautiful user experience
  • 7
    Easy to discover new code libraries
  • 6
    Smooth integration
  • 6
    Cloud SCM
  • 6
    Nice API
  • 6
    Graphs
  • 6
    Integrations
  • 6
    It's awesome
  • 5
    Quick Onboarding
  • 5
    Remarkable uptime
  • 5
    CI Integration
  • 5
    Hands down best online Git service available
  • 5
    Reliable
  • 4
    Free HTML hosting
  • 4
    Version Control
  • 4
    Simple but powerful
  • 4
    Unlimited Public Repos at no cost
  • 4
    Security options
  • 4
    Loved by developers
  • 4
    Uses GIT
  • 4
    Easy to use and collaborate with others
  • 3
    IAM
  • 3
    Nice to use
  • 3
    Ci
  • 3
    Easy deployment via SSH
  • 2
    Good tools support
  • 2
    Leads the copycats
  • 2
    Free private repos
  • 2
    Free HTML hostings
  • 2
    Easy and efficient maintainance of the projects
  • 2
    Beautiful
  • 2
    Never dethroned
  • 2
    IAM integration
  • 2
    Very Easy to Use
  • 2
    Easy to use
  • 2
    All in one development service
  • 2
    Self Hosted
  • 2
    Issues tracker
  • 2
    Easy source control and everything is backed up
  • 1
    Profound
CONS OF GITHUB
  • 53
    Owned by micrcosoft
  • 37
    Expensive for lone developers that want private repos
  • 15
    Relatively slow product/feature release cadence
  • 10
    API scoping could be better
  • 8
    Only 3 collaborators for private repos
  • 3
    Limited featureset for issue management
  • 2
    GitHub Packages does not support SNAPSHOT versions
  • 2
    Does not have a graph for showing history like git lens
  • 1
    No multilingual interface
  • 1
    Takes a long time to commit
  • 1
    Expensive

related GitHub posts

Johnny Bell

I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

See more
Russel Werner
Lead Engineer at StackShare · | 32 upvotes · 2M views

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more