Alternatives to Docker Compose logo

Alternatives to Docker Compose

Kubernetes, Docker, Docker Swarm, Helm, and Ansible are the most popular alternatives and competitors to Docker Compose.
21.2K
16K
+ 1
501

What is Docker Compose and what are its top alternatives?

Docker Compose is a tool that allows users to define and run multi-container Docker applications. Its key features include defining services and networks in a single file, scaling services up or down, and easily spinning up multiple containers with a single command. However, Docker Compose has limitations such as lack of support for Windows containers and limited networking options.

  1. Kubernetes: Kubernetes is an open-source container orchestration platform that automates many of the manual tasks involved in deploying, scaling, and managing containerized applications. Key features include automated scaling, self-healing, and extensive networking capabilities. Pros: Scalability, self-healing, extensive networking options. Cons: Steeper learning curve compared to Docker Compose.

  2. Docker Swarm: Docker Swarm is a native clustering and orchestration tool for Docker. It allows users to manage a cluster of Docker engines as a single virtual system. Key features include automatic load balancing, rolling updates, and high availability. Pros: Simple setup, seamless Docker integration. Cons: Not as feature-rich as Kubernetes.

  3. Nomad: Nomad is a cluster manager and scheduler designed for microservices and batch workloads. It supports multiple job types, including Docker containers, and provides a simple way to deploy and manage applications across a cluster of machines. Pros: Simple configuration, support for multiple job types. Cons: Less mature ecosystem compared to Kubernetes.

  4. Rancher: Rancher is an open-source platform for managing containerized workloads and Kubernetes clusters. It provides a user-friendly interface for deploying, managing, and securing containers across different environments. Key features include centralized management, multi-cluster support, and monitoring capabilities. Pros: User-friendly interface, multi-cluster support. Cons: Overhead of managing additional infrastructure.

  5. HashiCorp Terraform: Terraform is an infrastructure as code tool that allows users to define and provision infrastructure using a declarative configuration language. It supports a wide range of providers, including Docker, AWS, and Kubernetes. Key features include resource graph visualization, state management, and infrastructure drift detection. Pros: Infrastructure as code, support for multiple providers. Cons: Not specifically designed for container orchestration.

  6. Mesos: Apache Mesos is a distributed systems kernel that abstracts CPU, memory, storage, and other compute resources to provide a unified API for running applications. It supports containerization technologies such as Docker and provides a scalable platform for deploying and managing applications. Pros: Scalability, support for multiple container runtimes. Cons: Steeper learning curve.

  7. Portainer: Portainer is a lightweight management UI for Docker. It allows users to easily manage containers, images, volumes, networks, and more through a web-based interface. Key features include container deployment, resource utilization monitoring, and user access control. Pros: User-friendly interface, lightweight. Cons: Limited features compared to full-fledged orchestration platforms.

  8. Supervisor: Supervisor is a process control system that provides a simple way to manage and monitor processes on a Unix-like operating system. While not specifically designed for container orchestration, it can be used to manage Docker containers and provide basic monitoring capabilities. Pros: Lightweight, simple setup. Cons: Limited features for container orchestration.

  9. Convox: Convox is an open-source platform that simplifies the process of deploying, managing, and scaling containerized applications on AWS. It provides a command-line interface and web UI for automating common tasks such as app deployment, resource scaling, and log streaming. Pros: Simplified deployment on AWS, automation of common tasks. Cons: Limited support for other cloud providers.

  10. Red Hat OpenShift: OpenShift is a Kubernetes-based platform for building, deploying, and managing containerized applications. It provides a developer-friendly experience with built-in CI/CD pipelines, automated scaling, and integrated monitoring. Key features include developer tools, service mesh, and multi-cloud support. Pros: Developer-friendly experience, enterprise-grade features. Cons: Vendor lock-in with Red Hat.

Top Alternatives to Docker Compose

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • Docker Swarm
    Docker Swarm

    Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself. ...

  • Helm
    Helm

    Helm is the best way to find, share, and use software built for Kubernetes.

  • Ansible
    Ansible

    Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...

  • Portainer
    Portainer

    It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code. ...

  • Terraform
    Terraform

    With Terraform, you describe your complete infrastructure as code, even as it spans multiple service providers. Your servers may come from AWS, your DNS may come from CloudFlare, and your database may come from Heroku. Terraform will build all these resources across all these providers in parallel. ...

  • minikube
    minikube

    It implements a local Kubernetes cluster on macOS, Linux, and Windows. Its goal is to be the tool for local Kubernetes application development and to support all Kubernetes features that fit. ...

Docker Compose alternatives & related posts

Kubernetes logo

Kubernetes

58.7K
50.7K
677
Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
58.7K
50.7K
+ 1
677
PROS OF KUBERNETES
  • 164
    Leading docker container management solution
  • 128
    Simple and powerful
  • 106
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
  • 25
    Scale services
  • 20
    Replication controller
  • 11
    Permission managment
  • 9
    Supports autoscaling
  • 8
    Cheap
  • 8
    Simple
  • 6
    Self-healing
  • 5
    No cloud platform lock-in
  • 5
    Promotes modern/good infrascture practice
  • 5
    Open, powerful, stable
  • 5
    Reliable
  • 4
    Scalable
  • 4
    Quick cloud setup
  • 3
    Cloud Agnostic
  • 3
    Captain of Container Ship
  • 3
    A self healing environment with rich metadata
  • 3
    Runs on azure
  • 3
    Backed by Red Hat
  • 3
    Custom and extensibility
  • 2
    Sfg
  • 2
    Gke
  • 2
    Everything of CaaS
  • 2
    Golang
  • 2
    Easy setup
  • 2
    Expandable
CONS OF KUBERNETES
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
  • 1
    Additional vendor lock-in (Docker)
  • 1
    More moving parts to secure
  • 1
    Additional Technology Overhead

related Kubernetes posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 9.7M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 2.9M views

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Docker logo

Docker

170.3K
137K
3.9K
Enterprise Container Platform for High-Velocity Innovation.
170.3K
137K
+ 1
3.9K
PROS OF DOCKER
  • 823
    Rapid integration and build up
  • 691
    Isolation
  • 521
    Open source
  • 505
    Testa­bil­i­ty and re­pro­ducibil­i­ty
  • 460
    Lightweight
  • 218
    Standardization
  • 185
    Scalable
  • 106
    Upgrading / down­grad­ing / ap­pli­ca­tion versions
  • 88
    Security
  • 85
    Private paas environments
  • 34
    Portability
  • 26
    Limit resource usage
  • 17
    Game changer
  • 16
    I love the way docker has changed virtualization
  • 14
    Fast
  • 12
    Concurrency
  • 8
    Docker's Compose tools
  • 6
    Easy setup
  • 6
    Fast and Portable
  • 5
    Because its fun
  • 4
    Makes shipping to production very simple
  • 3
    Highly useful
  • 3
    It's dope
  • 2
    Very easy to setup integrate and build
  • 2
    HIgh Throughput
  • 2
    Package the environment with the application
  • 2
    Does a nice job hogging memory
  • 2
    Open source and highly configurable
  • 2
    Simplicity, isolation, resource effective
  • 2
    MacOS support FAKE
  • 2
    Its cool
  • 2
    Docker hub for the FTW
  • 2
    Super
  • 0
    Asdfd
CONS OF DOCKER
  • 8
    New versions == broken features
  • 6
    Unreliable networking
  • 6
    Documentation not always in sync
  • 4
    Moves quickly
  • 3
    Not Secure

related Docker posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Docker Swarm logo

Docker Swarm

780
979
282
Native clustering for Docker. Turn a pool of Docker hosts into a single, virtual host.
780
979
+ 1
282
PROS OF DOCKER SWARM
  • 55
    Docker friendly
  • 46
    Easy to setup
  • 40
    Standard Docker API
  • 38
    Easy to use
  • 23
    Native
  • 22
    Free
  • 13
    Clustering made easy
  • 12
    Simple usage
  • 11
    Integral part of docker
  • 6
    Cross Platform
  • 5
    Labels and annotations
  • 5
    Performance
  • 3
    Easy Networking
  • 3
    Shallow learning curve
CONS OF DOCKER SWARM
  • 9
    Low adoption

related Docker Swarm posts

Yshay Yaacobi

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more
Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Helm logo

Helm

1.4K
884
18
The Kubernetes Package Manager
1.4K
884
+ 1
18
PROS OF HELM
  • 8
    Infrastructure as code
  • 6
    Open source
  • 2
    Easy setup
  • 1
    Support
  • 1
    Testa­bil­i­ty and re­pro­ducibil­i­ty
CONS OF HELM
    Be the first to leave a con

    related Helm posts

    Emanuel Evans
    Senior Architect at Rainforest QA · | 20 upvotes · 1.5M views

    We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).

    We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .

    Read the blog post to go more in depth.

    See more
    Russel Werner
    Lead Engineer at StackShare · | 7 upvotes · 533.9K views

    We began our hosting journey, as many do, on Heroku because they make it easy to deploy your application and automate some of the routine tasks associated with deployments, etc. However, as our team grew and our product matured, our needs have outgrown Heroku. I will dive into the history and reasons for this in a future blog post.

    We decided to migrate our infrastructure to Kubernetes running on Amazon EKS. Although Google Kubernetes Engine has a slightly more mature Kubernetes offering and is more user-friendly; we decided to go with EKS because we already using other AWS services (including a previous migration from Heroku Postgres to AWS RDS). We are still in the process of moving our main website workloads to EKS, however we have successfully migrate all our staging and testing PR apps to run in a staging cluster. We developed a Slack chatops application (also running in the cluster) which automates all the common tasks of spinning up and managing a production-like cluster for a pull request. This allows our engineering team to iterate quickly and safely test code in a full production environment. Helm plays a central role when deploying our staging apps into the cluster. We use CircleCI to build docker containers for each PR push, which are then published to Amazon EC2 Container Service (ECR). An upgrade-operator process watches the ECR repository for new containers and then uses Helm to rollout updates to the staging environments. All this happens automatically and makes it really easy for developers to get code onto servers quickly. The immutable and isolated nature of our staging environments means that we can do anything we want in that environment and quickly re-create or restore the environment to start over.

    The next step in our journey is to migrate our production workloads to an EKS cluster and build out the CD workflows to get our containers promoted to that cluster after our QA testing is complete in our staging environments.

    See more
    Ansible logo

    Ansible

    18.8K
    15.2K
    1.3K
    Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
    18.8K
    15.2K
    + 1
    1.3K
    PROS OF ANSIBLE
    • 284
      Agentless
    • 210
      Great configuration
    • 199
      Simple
    • 176
      Powerful
    • 155
      Easy to learn
    • 69
      Flexible
    • 55
      Doesn't get in the way of getting s--- done
    • 35
      Makes sense
    • 30
      Super efficient and flexible
    • 27
      Powerful
    • 11
      Dynamic Inventory
    • 9
      Backed by Red Hat
    • 7
      Works with AWS
    • 6
      Cloud Oriented
    • 6
      Easy to maintain
    • 4
      Vagrant provisioner
    • 4
      Simple and powerful
    • 4
      Multi language
    • 4
      Simple
    • 4
      Because SSH
    • 4
      Procedural or declarative, or both
    • 4
      Easy
    • 3
      Consistency
    • 2
      Well-documented
    • 2
      Masterless
    • 2
      Debugging is simple
    • 2
      Merge hash to get final configuration similar to hiera
    • 2
      Fast as hell
    • 1
      Manage any OS
    • 1
      Work on windows, but difficult to manage
    • 1
      Certified Content
    CONS OF ANSIBLE
    • 8
      Dangerous
    • 5
      Hard to install
    • 3
      Doesn't Run on Windows
    • 3
      Bloated
    • 3
      Backward compatibility
    • 2
      No immutable infrastructure

    related Ansible posts

    Tymoteusz Paul
    Devops guy at X20X Development LTD · | 23 upvotes · 8M views

    Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

    It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

    I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

    We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

    If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

    The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

    Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

    See more
    Sebastian Gębski

    Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.

    See more
    Portainer logo

    Portainer

    477
    818
    144
    Open source tool for managing containerized applications
    477
    818
    + 1
    144
    PROS OF PORTAINER
    • 35
      Simple
    • 26
      Great UI
    • 19
      Friendly
    • 12
      Easy to setup, gives a practical interface for Docker
    • 11
      Because it just works, super simple yet powerful
    • 11
      Fully featured
    • 9
      A must for Docker DevOps
    • 7
      Free and opensource
    • 5
      API
    • 5
      It's simple, fast and the support is great
    • 4
      Template Support
    CONS OF PORTAINER
      Be the first to leave a con

      related Portainer posts

      Wallace Alves
      Cyber Security Analyst · | 2 upvotes · 859.5K views

      Docker Docker Compose Portainer ELK Elasticsearch Kibana Logstash nginx

      See more
      Charles Coleman
      President/CEO at Rapidfyre · | 2 upvotes · 283.2K views
      Shared insights
      on
      PortainerPortainerDockerDocker

      I've found Portainer to be a like the 8 tooled jacknife I need for Docker and am loving it. Wasn't hard to get up and going and is well rounded enough to do everything I need. Win win.

      See more
      Terraform logo

      Terraform

      17.9K
      14.2K
      345
      Describe your complete infrastructure as code and build resources across providers
      17.9K
      14.2K
      + 1
      345
      PROS OF TERRAFORM
      • 122
        Infrastructure as code
      • 73
        Declarative syntax
      • 45
        Planning
      • 28
        Simple
      • 24
        Parallelism
      • 8
        Well-documented
      • 8
        Cloud agnostic
      • 6
        It's like coding your infrastructure in simple English
      • 6
        Immutable infrastructure
      • 5
        Platform agnostic
      • 4
        Extendable
      • 4
        Automation
      • 4
        Automates infrastructure deployments
      • 4
        Portability
      • 2
        Lightweight
      • 2
        Scales to hundreds of hosts
      CONS OF TERRAFORM
      • 1
        Doesn't have full support to GKE

      related Terraform posts

      Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

      Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

      Check Out My Architecture: CLICK ME

      Check out the GitHub repo attached

      See more
      Emanuel Evans
      Senior Architect at Rainforest QA · | 20 upvotes · 1.5M views

      We recently moved our main applications from Heroku to Kubernetes . The 3 main driving factors behind the switch were scalability (database size limits), security (the inability to set up PostgreSQL instances in private networks), and costs (GCP is cheaper for raw computing resources).

      We prefer using managed services, so we are using Google Kubernetes Engine with Google Cloud SQL for PostgreSQL for our PostgreSQL databases and Google Cloud Memorystore for Redis . For our CI/CD pipeline, we are using CircleCI and Google Cloud Build to deploy applications managed with Helm . The new infrastructure is managed with Terraform .

      Read the blog post to go more in depth.

      See more
      minikube logo

      minikube

      108
      257
      3
      Local Kubernetes engine
      108
      257
      + 1
      3
      PROS OF MINIKUBE
      • 1
        Let's me test k8s config locally
      • 1
        Can use same yaml config I'll use for prod deployment
      • 1
        Easy setup
      CONS OF MINIKUBE
        Be the first to leave a con

        related minikube posts